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Eigenvalue Approximation by Mixed 
and Hybrid Methods 

By B. Mercier, J. Osborn*, J. Rappaz** and P. A. Raviart 

Abstract. Rate of convergence estimates are derived for the approximation of eigenvalues 
and eigenvectors by mixed and hybrid methods. Several closely related abstract results on 
spectral approximation are proved. These results are then applied to a variety of finite 
element methods of mixed and hybrid type: a mixed method for 2nd order problems, mixed 
methods for 4th order problems, a hybrid method for 2nd order problems, and two mixed 
methods for the Stokes eigenvalue problem. 

1. Introduction. The use of mixed and hybrid methods for the approximate 
solution of source problems has received considerable attention. We mention the 
works of Herrmann [20], [21], Glowinski [19], Miyoshi [29], Oden [33], Johnson 
[25], Mercier [27], Ciarlet-Raviart [10], Brezzi [6], [7], Scholz [42], [43], Brezzi- 
Raviart [8], Oden-Reddy [35], Raviart-Thomas [40], [41], Falk [14], Falk-Osborn 
[15], Rannacher [39], and Babuska-Osbom-Pitkaranta [5]. 

Nemat-Nasser [30], [311, [32] has observed that mixed methods are effective for 
the approximation of eigenvalues of differential equations with rough coefficients. 
Babuska-Osborn [3] establish rate of convergence estimates for these methods as 
they pertain to ordinary differential equations. 

Canuto [9] and Ishihara [23], [24] have studied eigenvalue approximations for the 
biharmonic problem by mixed methods. For the 2nd order problems, Mercier-Rap- 
paz [28] derived optimal estimates for a hybrid method, and Ishihara [22] obtained 
estimates for a mixed method. 

It is the purpose of this paper to prove several closely related abstract results on 
eigenvalue approximation that can be applied to a wide variety of finite element 
eigenvalue approximation methods of mixed or hybrid type (including most of 
those mentioned above). 

In Sections 2-6, we prove the abstract results. These are obtained as a conse- 
quence of results of Osborn [36] and Descloux-Nassif-Rappaz [12], [13]. In Section 
7, we apply these results to several finite element methods of mixed or hybrid type: 
a mixed method for the 2nd order elliptic equations, mixed methods for 4th order 
problems, a hybrid method for 2nd order problems, and two methods for the 
approximations of the eigenvalues of the Stokes problem. 
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We describe now the general types of problems that we will consider. Let X and 
W be two complex Hilbert spaces with scalar products and norms (-, )x, 11 * lx, 

( Xw II)w II* w respectively, andleta:X xX -C,b:X X W->C,r:X xX-- 
C, and S: W x W -> C be continuous sesquilinear forms. We consider eigenvalue 
problems of the following two forms: 

Find X E C, 0 # (u, p) E X x W satisfying 

(Qi) { a(u, v) + b(v, p) = Ar(u, v), Vv E X, 

b(u, q) = 0, Vq E W. 

Find X e C, 0 # (u, p) E X x W satisfying 

(Q2) (a(u, v) + b(v,p) = O, Vv E X, 

b(u, q) = -X(p, q), Vq E W. 

We are interested in the approximations of eigenvalues of (Q1) and (Q2), and 
toward this end we suppose we are given families of finite-dimensional spaces 
Xh c X and Wh c W and consider the following approximate eigenvalue prob- 
lems: 

Find Xh e C, 0 : (uh, Ph) c Xh X Wh satisfying 

(Ql)h } a(uh, Vh) + b(vh,P.) = Xhr(uh, Vh), Vvh E Xh, 

( b(uh, qh) = 0, Vqh E Wh. 

Find Xh c C, 0 :FL (Uh, Ph) e Xh X Wh satisfying 

(Q2)h f a(uh, vh) + b(vh,ph) = 0, VVh E Xh, 

( b(uh, qh) = -Xhs(Ph, qh), Vqqh E Wh. 

We now regard Xh, Uh, and Ph as approximations to X, u, and p, respectively, and 
study the errors in these approximations. 

Notations. Throughout this paper we shall use the Sobolev spaces WiJP(Q), where 
Q is an open set in Rn, m is a nonnegative integer, and 1 ( p < oo, with the usual 
norms and seminorms IImp,g and I *mp,17. When p = 2, we denote Wm,2(Q) by 
Hm(Q) and write 

|m Q = |V|m,2,Q | IIVIIm,Q = IIVIIm,2,Q- 

We also use the vector versions of these spaces with the usual product norms and 
notations: H'(Q), for example, will denote the space of functions u(x) = 

(u1(x), u2(x), .. ., ud(x)) with Uj E H 1((Q), j = 1, 2, . .. , d; the dimension d will be 

understood from the context. H(2) is the subspace of functions in H'(a) that 
vanish on r = a H 1/2(F) is the space of traces v/F of functions v E H l(Q) and 
H-1/2(F) is the dual space of H 1'2(F). H(div, Q) = {q E L2(Q) = (L2(p))n: div q E 
L2(Q2)} where div is the divergence operator. 

2. A General Spectral Approximation Result. General results on spectral ap- 
proximation for compact operators were obtained by Bramble-Osborn [4] and 
Osborn [36]. Descloux-Nassif-Rappaz [12], [13] have refined and extended some of 
the results of [4], [36]. 

In this section we state two general results on the approximation of eigenvalues 
and eigenvectors of compact operators, referring to [36], [12] for proofs. 
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Let T be a compact operator on a complex Banach space H with norm I * H and 
let f Th lO<h,; I be a family of compact operators on H satisfying 

(2.1) lim IT - ThI = 0, 

where I is the operator norm on H. The spectrum of T consists of a countable set 
of complex numbers, and each nonzero number in the spectrum is an isolated 
eigenvalue. Let it be a nonzero eigenvalue of T. Then there exists a least integer a 
such that Ker((u - T)') = Ker((u - T)a+") E, with dimE m < oo. a is 
called the ascent of (,u - T), the elements of E the generalized eigenvectors of T 
corresponding to ,u, and m the algebraic multiplicity of it. The order of a gener- 
alized eigenvector f e E is the smallest positive integer j such that f e 
Ker(( ,u - TY). 

Let T*: H* - H* be the adjoint operator of T defined on the dual space H* of 
H, i.e. the space of bounded, conjugate linear forms on H. Then ,u is an eigenvalue 
of T* with algebraic multiplicity m. The ascent of (u - T*) will be a. Let 
E* = Ker((,u - T*)') be the space of generalized eigenvectors of T* correspond- 
ing to ,u. 

It is well known, as a consequence of (2.1), that exactly m eigenvalues of Th 

(counted according to algebraic multiplicity) converge to ,u; we denote these by 

Alh' A2h' .. I * Amh- 

THEOREM 2.1. There are constants C and ho such that, for 0 < h < h 

I~2 i sup 1 hT 
! T)ufv> 

/A- Ea lAih < C( SU <T T),v> 
m i uC-E*,IuIH 1 

(2.2) vEE,IVIH. 1 

+ I(T - Th)/EI - I(T* T h)/E.I* C6h, 

(2-3) | 
I 

.*|<C^ - 
1: m~I< 8 

(2.4) m _ iha < Ch, 1, 2,..., 

where (T - Th)/E denotes the restriction of T - Th to E and 1 1* is the operator 
norm on H*. O 

Given two closed subspaces M and N of H, we define 

6(M, N) = sup inf Iu - vIH 
UeM vEN 
uIlH 1 

and then define 6(M, N), the gap between M and N, by 

8(M, N) = max[6(M, N), 6(N, M)]. 

Let Eh be the direct sum of the generalized eigensubspaces of Th corresponding 
to I'hl' I2h' .... ymh. As a consequence of (2.1), dim Eh = dim E = m for small h 
and the eigenvector error, as measured by 6(E, E.), is estimated by 

THEOREM 2.2. There is a constant C such that 

(2.5) 6(E, Eh) < CI(T - Th)/EI. J 
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Theorems 2.1 and 2.2 have been used to analyze a wide variety of eigenvalue 
problems; cf. [12], [13], [36]. 

3. A General Result on Variationally Posed Eigenvalue Problems. We consider in 
this section the approximation of variationally posed eigenvalue problems, i.e., 
eigenvalue problems of the form 

(3.1) 
{ Find X E C, 0 # U E H1 satisfying 

(3.1) A(U, V) = XB(U, V), VMV E H2, 

where H1 and H2 are complex Hilbert spaces with norms II * II, and 11 * 112 and A: 
H1 X H2 -* C and B: H1 X H2 -* C are continuous sesquilinear forms satisfying 

(3.2) inf sup IA(U, V)I = a, > ?, 
UEEHI VE-H2 

"1Ull=' 1 1V1l2= 1 

(3.3) sup IA(U, V)I > 0 forallO ? V E H2, 

and 

(3.4) T: H1 -* H1 is compact, 

where T satisfies 

A(TU, V) = B(U, V), VV E H2. 

We are interested in approximating the eigenvalues of (3.1), and toward this end we 
suppose we are given families of finite-dimensional subspaces Slh c H1 and 
S2h c H2, 0 < h < 1, with dim Slh = dim S2h, and we consider the approximate 
eigenvalue problem 

(35) tFind Xh E C, 0 ? Uh E Slh satisfying 

( A ( Uh, Vh) = XhB( Uh, Vh), V Vh E S2h 

Concerning (3.5) we assume 

inf sup IA(Uh, Vh)I > a2 > 0? 
Uh E Slh VheS2h (3.6) h 1 V1jE2= 

where a2 is independent of h, and 

(3.7) lim inf I U - Uh III = 0 for each U E- HI. 
h-O Uh Ei Slh 

X, U is an eigenpair of (3.1) if and only if XTU = U, U ? 0, i.e., if and only if 
,u = 1 /X, U is an eigenpair of T. We define the algebraic multiplicity of X as the 
algebraic multiplicity of ,u as an eigenvaue of T. The generalized eigensubspace 
E = Ker(( ,u - T)a), where a is the ascent of (,u - T), can be characterized in 

terms of the form A and B as follows. For an integer j > 1, a nonzero vector Uj is 
a generalized eigenvector of orderj if 

A(Uj, V) = XB(Uj, V) + X(Uj-', V), VV E H2, 

for some nonzero generalized eigenvector Uj -I of orderj - 1. 
If X is an eigenvalue of (3.1) then X will have adjoint eigenvectors V, i.e., nonzero 

V E H2 satisfying 

(3.8) A ( U, V) = AB( U, V), V U e H1. 
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(3.8) holds if and only if XT* V = V, where T*: H2 -* H2 satisfies 

A(TU, V) = A(U, T*V), VU E HI, V e H2. 

T* is formally the adjoint of T with respect to the form A. The ascent of ( -TO) 
is the same as the ascent of (,u - T). Denote the generalized adjoint eigenspace 
(i.e. the generalized eigenspace corresponding to ,i and T*) by E*= 
Ker((,ii - T*)a). V' is an adjoint generalized eigenvector of orderj if 

A(U, VJ) = XB(U, VJ) + XA(U, VJ-'), VU e H1, 

for some adjoint generalized eigenvector V'- 1 of orderj - 1. 
Let X be an eigenvalue of (3.1) and let m be its algebraic multiplicity. As h tends 

to zero, exactly m eigenvalues Xlh X2h, . .. I X,,mh of (3.5) (counted according to 
algebraic multiplicity) converge to X. Let Xh = (l/m)lm 1 Xih and let E. be the 
direct sum of the generalized eigenspaces corresponding to Xlh, X2h, . .. , X,M. Let 

h= sup inf IU - Xlii and e* = sup inf 1IV- -12. 
UEE XeSlh VEE* SES2h 
U(II = 1 11 V112 1 

We are now ready to state our fundamental error estimate. 

THEOREM 3.1. There are constants C and ho > 0 such that, for 0 < h < h 

(3.9) |X - X I< Oh 

(3.10) -b|< C(s^sh -) / , II 1 2, ... ., m, 

and 

(3 .11 ) ?(E Eh) < CEh. 

For a proof of this theorem, in the case when the ascent is one, we refer to 
Babuska and Aziz [2] and Fix [16]. For a complete discussion of this theorem and a 
proof in the general case (which is based on Theorem 2.1), we refer to Kolata [26]. 

We now turn to the application of this result to a certain class of eigenvalue 
problems of type (Ql) and (Q2). Let a and b be continuous sesquilinear forms on 
X x X and X x W, respectively, and assume 

(3.12) Re a(u, u) > I31 uU12 I Vu E V, /31 > 0, 
where V = {v E X: b(v, q) = 0, Vq E W), and 

(3.13) sup lb(u, q)l > ylqll w, Vq E W, y > 0. 
uE-X IIulIx 

Let Xh c X and Wh c W be finite-dimensional spaces and assume 

(3.14) Re a(uh, Uh) > 8211hII X Uh E V 

where V. = {vh E Xh: b(vh, q.) = 0, Vqh E Wh) / 2 independent of h, 
(3.15) sup I~b(uh, qj) 

(3.15) UhesXh IhI IX Y2llqhlI W Vqh E Wh, 

Y2 independent of h, and 

(3.16) lim inf (IIu - uhllx + llq - qhllw) = 0, 
h .h-O (uh, qh) E Xh X Wh 

for each (u, q) E X X W. 



432 B. MERCIER, J. OSBORN, J. RAPPAZ AND P. A. RAVIART 

We then consider the eigenvalue problems of type (Q1) and (Q2) with these 
hypotheses satisfied. These problems and the associated finite-dimensional prob- 
lems are easily seen to be of the form (3.1) and (3.5), respectively, with the 
following identifications: 

H1 = H2 = X X W, 

U= (u,p), 

V= (v, q), 

A(U, V) = A((u, p), (v, q)) = a(u, v) + b(v, p) + b(u, q), 

B( U, V) = B((u, p), (v, q)) 
r 
-s(p, q) for problem (Q2), 

Slh = S2h = Xh X Wh. 

It is well known (Brezzi [6], Babuska [1]) that conditions (3.12)-(3.16) ensure the 
validity of (3.2), (3.3), (3.6), and (3.7). In addition, we assume (3.4) holds with A 
and B defined as above. 

Thus, all of the hypotheses concerning (3.1) and (3.5), with the above identifica- 
tions, are satisfied, and the estimates of Theorem 3.1 hold. We will write out these 
estimates in a special case. Suppose the forms a, r, and s are all positive definite. 
Then A and B are hermitian symmetric, the eigenvalues X are all positive, and all 
generalized eigenvectors are eigenvectors (we have a = 1, and m is the geometric 
multiplicity of A). The estimates of Theorem 3.1 thus have the form 

(3.17) IX-XhI Cch2, i=1,2,...,m, 

(3.18) &(E, EJ) Ceh, 

where E is the eigenspace corresponding to X, Eh is the direct sum of the 
eigenspaces corresponding to Xlh, X2h, X, ,,h, and 

=h sup inf (IIu - VhIIx + Ilp - qhllIw). 
(u,p)eE (vh, qh)EXhX Wh 

IjUiX + IIPII W=1 

We refer to problems with the formal structure of (Ql) or (Q2), which satisfy 
(3.12)-(3.16) and (3.4), as problems satisfying the full Brezzi hypotheses. There are, 
however, other problems of type (Ql) or (Q2) which do not satisfy the Brezzi 
hypotheses (in terms of the usual norms that have been used in their analysis). 

In general, in the case of problems of type (Ql), (3.12) holds but not (3.13), 
whereas, in the case of problems of type (Q2), (3.13) holds but not (3.12). In both 
cases the operator T is not defined and that is the main reason why we cannot 
always apply the results of Section 3. 

We now turn to the consideration of these problems. 

4. A Result on a Nonconforming Approximation Method. We analyze in this 
section a class of nonconforming approximations to variationally posed eigenvalue 
problems. 

Let X c H be two complex Hilbert spaces with scalar products ((, *)), (, *) 
and norms 11 11, 1 1, respectively. We suppose the injection of X into H is 
continuous, but not necessarily compact. Let V be a closed subspace of X and let 
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a(-, *) and r(., ) be bounded, sesquilinear forms on X x X and H x H, respec- 
tively. We then consider the eigenvalue problem 

(4.1) { 
Find X EC, O# 

= u E V satisfying 
a(u, v) Xr(u, v), Vv E V. 

Next, we suppose we are given a family { Vh)0O<hl of finite-dimensional subspaces 
of X and consider the approximate problems 

(4.2) f(Find Xh E C, 0 # Uh E Vh satisfying 

( a(uh, vh) = Xhr(uh, Vh), Vvh E Vh. 

(4.1) is a variationally formulated eigenvalue problem and, since Vh , V in 
general, (4.2) represents a nonconforming approximation to (4.1). 

Regarding the form a(., *) we further assume 

(4.3a) Re a(u, u) > aIlUI12, VU E V, 
(4.4b) Re a(uh, Uh) > 0, Vuh E Vh, uh ? Oand Vh. 

In order to analyze this approximation method we introduce the bounded 
operators T, T*, Th, T*h: H-> H defined by: 

Forf E H 

(4.4) Tf E V, a(Tf, v) = r(f, v), Vv E V, 

(4.5) Thf E Vh, a(Thf, Vh) = r(f, Vh), Vvh E Vh, 

(4.6) T*f E V, a(v, T*f) = r(v,f), Vv E V, 

(4.7) T*hf E Vh, a(vh, T*hf) = r(vh, f), Vvh E Vh. 

We further assume that 

(4.8) lim IT- Th =O, 

where I * denotes the operator norm on H. This hypothesis implies T is compact 
since Th is compact. Note that a(Tu, v) = a(u, T*v) for all u, v e V. 

As in Section 3, it is easily seen that the eigenvalues of (4.1) are the reciprocals of 
the eigenvalues of T and that the eigenvectors of (4.1) are the same as the 
eigenvectors of T. 

Let ,u be a nonzero eigenvalue of T with algebraic multiplicity m and let E be the 
space of generalized eigenvectors of T corresponding to ,u. -i will be an eigenvalue 
of T* with algebraic multiplicity m. To see this, we first note that 

(4.9) T*1 = IfT1V)*I-1, 

where I: V* -> V is defined by a(v, I+) =+(v), Vv E V, 4 E V* and (Tiv)*: 
V*- V* is the usual V-adjoint of Tlv considered as a continuous linear operator 
on V. From standard results on adjoints we see that ,u is an eigenvalue of (Tlv)* 
with algebraic multiplicity m. The same result for T* now follows from (4.9). Let 
E*be the space of generalized eigenvectors of T* corresponding to ,u. As a 
consequence of (4.8), we know that exactly m eigenvalues of Th converge to ,u. 
Denote these by AIlh I2h u*mh. We are now ready to state the main theorem of 
this section. 
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THEOREM 4.1. There are two constants C and ho > 0 such that, for h < ho, 

- lm Cuh ( sup sup Ir((T- T,)u, v) rn UEE veE=E 
1u1=1 IvI=1 

(4.10) 
+ I(T - 

Th)/EI |j(T- T*h)E*I} 

m 

(4.11) m< ch 

(4.1 2) I y- Yha|< cah 8 j = 1, 2, . .. ,m 

where, for example, I(T - Th)/EI = SUPuEE. E;l 15I(T - Th)uI. 

Proof. Let r be a circle centered at I which lies in the resolvent set of T and 
which encloses no other points in the spectrum of T, and let 

P =21f(z -T-TY dz, Ph = Z - i(z-Th)-' dz, 

P*= 2Lf(z - Ta) dz, P*h = (z - T*h) dz 

be the spectral projections associated with T and pt, Th and I1lh' 12h' ... , * Mh T* 
and ,i, and T*h and tLlh 2h ... 4,, respectively; here P is the conjugate cir of r 
(positively oriented). From (4.8) we see that Ah = PhIE: E -* Eh is a bijection for 
small h and that A-' is uniformly bounded in h: 

(4.13) IA-'I < C, Vh (ho. 

Now we define T = TIE: E -> E and Th = Ah-ThAh: E -> E. The spectrum of T is 
{,u} and that of Th is {AM, t 2h, .h... , yWh). It is easily seen that P(H) = E, 
P*(H) = E*, Ph(H) = Eh the direct sum of the generalized eigenspaces of Th 
corresponding to tLlh, t2h ... Umh, and P*h(H) = E*h the direct sum of the 
generalized eigenspaces of T*h corresponding to tLlh, L2h,. . . , . Finally, we note 
that a(Pu, v) = a(u, P*v), Vu, v E V, and r(Phu, v) = r(u, P*hV), Vu, v E H. 

By standard estimates (see, e.g., [45, pp. 80-81]), we have 

(4.14a) Im T T 

(4.14b) m- E tti, < cIT Th , 

(4.14c) T > C ThT| j = 1, 2, . ..,m, 

where I is the operator norm on E (corresponding to the vector norm I on H). 
Using (4.3), the fact that E is finite-dimensional, and the properties of P, we see 
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that 

T -Thi = sup I(T- Th)uI < C sup (T-Th)uii 
uEE uEE 
Jul= 1 Ilull=1 

< C sup sup la((T - T^h)u, v)I = C sup sup Ia(( -Th)u, P*v)I 
(4.15) uEE vEV uEE vEV 

hlull = ll lll = 1 lull=l ll ll l 

< C sup sup la(( -Th)u, v)I < C sup sup la((T-Th)u, T*v)I 
ueE vEE* uEE vEE* 

lIull= 1llll= 1 IuI=1 IvI=1 

It follows from the definition of T* and the properties of Ph and Ah that 

a((T'- Th)u, T*v) = r((T - Th)U, v) 

(4.16) = r((T - Th)u, v) + r((A-1Ph - I)(T - Th)u, v) 

= r((T - Th)u, v) + r((A-hPh - I)(T - Th)U, V - P*hV). 

Theorem 4.1 now follows from (4.14), (4.15), (4.16), (4.13), and I(P* - P*h)/EI < 

Cl(T* - T*h)/EI. El 
Let us turn now briefly to eigenvector estimates. 

THEOREM 4.2. There is a constant C such that 

(4.17) 6(E, Eh) < CI(T - Th)/EI, 

where 6(E, ED) is the gap with respect to the H-norm and is the operator norm 
corresponding to the H-norm. 

Proof. A minor modification of the techniques in [36] yields this result. E1 

5. Problems of Type (Q1). In this section we consider problems of type (Ql) that 
do not satisfy the full Brezzi hypotheses ((3.12)-(3.16), (3.4)). We will, however, 
make other alternate hypotheses. Throughout the section we suppose H is a Hilbert 
space with X c H continuously and suppose that r(., *) is a bounded sesquilinear 
form on H X H. We also suppose that b(v, q) = 0, Vv E X, implies q = 0 and 
that b(vh, qh) = 0, Vvh e Xh, implies qh = 0. 

We consider now the associated source problem and approximate source prob- 
lem as well as their adjoints. These are defined as follows: 

For g e H, 

Ag E X, Bg E W, 

(5.1) f a(Ag, v) + b(v, Bg) = r(g, v), Vv E X, 

b(Ag, q) = 0, Vq E W; 

Ahg E Xh, Bhg E Wh, 

(5.2) f a(Ahg, Vh) + b(vh, Bhg) = r(g, vh), Vvh e Xh, 

b(Ahg, qh) = 0, V qh E Wh; 

A*g E X, B*q E W, 

(5.3) [a(v, A *g) + b(v, B*g) = r(v, g), Vv E X, 

{ b(A*g, q) = 0, Vq E W; 
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A*hg E Xh, B*hq E Wh, 

(5.4) a(vhv A*hg) + b(vh, B*hg) = r(vh, g), Vvh E Xh, 

j b(A*hg, qh) = 0, Vqh E Wh. 

We shall suppose all these problems are uniquely solvable and that the compo- 
nent in X of the solution depends continuously on g (in connection with (5.1), for 
example, we would assume jlAgllx < CllgllHj Vg E H). In many practical cases 
(see Subsection 7d), operators B, B* are uniquely defined but source problems 
(5.1), (5.3) are not well posed in general. 

Let 

V= {v E X: b(v, q) = O,Vq E W) 
and 

Vh vh E Xh: b(vh, qh) = O,Vqh E Wh} 

and assume 

Re a(u, u) > allu112, Vu E V, 

Re a(uh, Uh) > 0, Vuh E Vh, uh # 0 and Vh. 

If A, (u,p) is an eigenpair of (Q1), then 

(5.5) { a(u, v)=Ar(u, v), Vv E V. 

Conversely, if u satisfies (5.5), then there exists a unique p E W, (p = XBu), such 
that A, (u, p) is an eigenpair of (Q1). 

Thus, the eigenvalues of (Q 1) can be characterized by a problem of type (5.5). p 
is the Lagrange multiplier for the constraint u E V and (5.5) is a constrained 
version of (Ql). 

In a similar way, we see that the eigenvalues of (Q ')h can be characterized by the 
problem 

{ Seek Xh E C, 0 # uh E Vh satisfying 

(5.6) | a(uh, vh) = Xhr(uh, vh), Vvh E Vh. 

Problems (5.5) and (5.6) are examples of problems (4.1) and (4.2). With A, Ah, 

A*, and A*h defined as in (5A1)-(5.4) and T, Th, T*, and T*h defined as in 
(4.4)-(4.7), we immediately see that T = A, Th = Ah, T* = A*, and T*h = A*h. 

Assume now that 

(5.7) lim IjA - AhIIHH = 0 

where, for an operator D: Y Z, we set 

ID IIY yz sup lDl 
WEY I WI Y 

(4.8) holds and thus all the hypotheses of Theorems 4.1 and 4.2 are satisfied, and 
we can apply them in the present context. Let ,u be an eigenvalue of A with 
algebraic multiplicity m, let Il1h1 IL2h, . . . , IUmh be the eigenvalues of Ah converging 
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to it, and set X = 1r', Xjh=I ,j= 1, . . .,m. Let E, E*, Eh, and E*, be the 
spaces of generalized eigenvectors as defined in Section 4. 

THEOREM 5.1. Under hypothesis (5.7) there are constants C and ho > 0 such that, 
for h < hoS 

|A m XN1\h| < C { II(A - Ah)/EIIHXj(A* - A*h)/EVHX 

+ sup sup inf b((A Ah)f, B*g - ) 
f EE g EE*qE~ eWh' 

1f11H=1 1IIgIIH=1 

+ sup sup inf -b((A A*h)f, Bg - ) 
f EE* g EE q E-=Wh 

11f11H= 1 11 g||H= 1 

(5.8) < Cl( II(A Ah)/EIIHXV(A* - 

+ ||(A - Ah)IE|Hx sup iEnf || B*g -W w 

IlglIH=1 

+ ||(A * - A *^)/ || sup inf II Bg - tt w} - *h)/E* HX gEE 'q=Wh 

11IgIH=1 

S C {1(A - Ah)/EIIHX (A* 
-A*h)IE| HX 

+ II(A - Ah)/EIIHX (B* - 
*h)E* HW 

+ |(A* - A*h)E || -|(B Bh)/EIIHW} 

Proof. We apply Theorem 4.1 with T = A, T* = A*, Th = Ah, and T*h = A*h. 

It is immediate that the second term on the right side of (4.10) is bounded by the 
right side of (5.8). It remains to consider 

sup sup Ir((A - Ah)f, g)I 
f EE gEE 

1f11H 1IIgII H- 

Let f, g E H. Adding the two equations in (5.3), we have 

r(v, g) = a(v, A*g) + b(v, B*g) + b(A*g, q), V(v, q) E X x W. 

Setting v = (A - A)f and q = (B - Bh)f, we obtain 

r((A - A)f, g) = a((A - A)f, A*g) + b((A - A)f, B*g) 

(5.9) 
+ b(A *g, (B- Bh)f).@ 
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Next, we note that subtraction of Eqs. (5.2) from (5.1) (with g replaced by J) 
yields 

(5.10) a((A - A)f, Vh) + b(vh, (B - Bh)f) + b((A - Ah)f, qh) = 0, 

5(vj qh) e Xh X WI. 

Now, combining (5.9) and (5.10), we have 

r((A -A)f, g) = a((A - A)f, A*g - Vh) + b((A - A)f, B*g - qh) 
(5.11) 

+ b(A*g - Vh, (B - Bh)f), (vh, 'Ih) e Xh X Wh. 

Setting Vh = A *hg in (5.1 1) and using (5.3) and (5.4), we find 

r((A -A)f, g) = a((A - Ah)f, (A* - A*h)g) + b((A - A)f, B*g - qh) 
(5. 12)/ 

+ b((A* - A *h)g, Bf - qh), Vqh, qh E Wh. 

(5.8) now follows immediately from Theorem 4.1 and (5.12). 0 

THEOREM 5.2. Under hypothesis (5.7) there is a constant C such that 

S(E, Eh) < CII(A - A)/EIIHH, 

where S(E, Eh) is the H-gap between E and Eh. 

Proof. This result is a direct consequence of Theorem 4.2. E 
Remark. It is easily seen that Theorems 5.1 and 5.2 are valid in the more general 

context in which the spaces X and W are allowed to depend on h (X = X(h) and 
W = W(h)), but V is independent of h, and the forms a and b are bounded for 
each h but are not required to be bounded uniformly in h. This remark is used in 
Subsection 7c. 

6. Problems of Type (Q2). In this section we consider problems of type (Q2) that 
do not satisfy the full Brezzi hypotheses ((3.12)-(3.16), (3.4)). As in Section 5 we 
make alternate hypotheses. 

We assume H and G are complex Hilbert spaces with X c H continuously and 
W c G compactly. We then suppose that s(p, q) = (P, q)G and that a(-, -) is a 
bounded sesquilinear form on H x H satisfying Re a(u, u) > 0 VO # u E H. 

Consider now the associated source problem and approximate source problem 
and their adjoints. These are defined as follows: For g E G, 

Ag E X, Bg E W 

(6.1) a(Ag, v) + b(v, Bg) = 0, Vv e X, 

1 b(Ag, q) = - (g, q)G, Vq E W; 

Ahg E Xh, Bhg E Wh 

(6.2) J a(A,g, Vh) + b(vh, Bjg) = 0, VVh E Xh, 

b(Ahg, qh) = -(g qh)G' Vqih E Wh; 

A*g E X, B*g E W 

(6.3) a(v, A*g) + b(v, B*g) = 0, Vv E X, 

b(A *g, q) = - (q, g), Vq E W, 
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A*hg E Xh, B*hg E Wh 

(6.4) a(vh, A*hg) + b(vh, B*hg) = 0, t,Vh e Xh, 

b(A*hg, qh) (qh, g)G, Vqh E Wh. 

We suppose all these problems are uniquely solvable. 
In addition we assume 

(6.5) lim lIB - BhIIGG = 0. 

This relation implies that B: G -* G is compact. We note that B* = B*, the usual 

G-adjoint of B. 
The eigenvalues of (Q2) can be characterized in terms of the operator B. In fact, 

if A, (u,p) is an eigenpair of (Q2), then XBp = p, p # 0, and if ABp = p, p # 0, 
then there is a u E X such that A, (u, p) is an eigenpair of (Q2). Thus, the 
eigenvalues of (Q2) are the reciprocals of the eigenvalues of B. In a similar way, we 
see that the eigenvalues of (Q2)h are the reciprocals of the eigenvalues of Bh. 

We now apply Theorem 2.1 to the operator B and the family of operators (Bh) 

on the space G. Suppose X-' has algebraic multiplicity m and let 

E = Ker((X' - B)a) and E* = Ker((-' -B*- 

where a is the ascent of Xc1 - B. Let Alh, A2S ... , Amh be the m eigenvalues of Bh 

that converge to X-1 and let Xh = (1/m):=1 Xih. 

THEOREM 6.1. Under hypothesis (6.5) there are two constants C and ho > 0 such 
that, for h S ho, 

- < C { II(A - A()/EIIGH(A* 
- 

+ sup sup inf b((A AX)f, B*g -) 
f EPE gEEP* EW h 

11IG=1 1IIgIG=1 

+ sup sup inf b -( A h)g, Bf - T)j 
f E-E g E=E* ~E-Wh 

11fIG=1 IIgIIG=1 

(6.6) 

+ II(B - Bh)/EIIGGV(B* - 
B*h)/E*GG 

< C II(A - Ah)/EIIGHV(A* - 
A*h)/E*GH 

+ 11 (A - Ah)/EI| GX (B* 
- 

B*h)/E* GW 

+ (A* 
- 

A*h)/E X II(B'- Bh)/EIIGW 

+II(B - Bh)/EIIGGV(B* - B*h) 
/ . 
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Proof. For f, g E G we consider ((B - Bh)f, g)G. From (6.3) we have 

(q, g)G = -a(v, A *g) - b(v, B*g) - b(A *g, q), V(v, q) E X X W. 

Setting q = (B - Bh)f and v = (A - A)f, we obtain 

((B - Bh)f g)G = -a((A - Ah)f, A*g) - b((A - Ah)f, B*g) 
(6.7) 

- b(A g, (B - Bh)f). 

Subtraction of (6.2) from (6.1) (with g replaced byf) yields 

(6.8) a((A - Ah)f, Vh) + b(vh, (B - Bh)f) + b((A - Ah)f, qh) = 0, 

V(vh, qh) E Xh X Wh. 

Now, combining (6.7) and (6.8), we have 

((B - Bh)f g)G = -a((A - A)f, A g - Vh) - b((A - A)f, B*g - qh) 

(6.9) 
- b(A*g - V., (B - Bh)f), V(vh, qh) e Wh X Wh. 

Setting Vh = A *hg in (6.9) and using (6.3) and (6.4), we get 

((B - Bh), g)G = -a((A- A)f, (A* -A *h)g) 

(6.10) - b((A- A)f, B*g - qh) 

- b((A A f - qh) , Vq, qh e Wh. 

(6.6) now follows immediately from Theorem 2.1 and (6.10). El 

THEOREM 6.2. There is a constant C such that 

S(E, Eh) < CII(B - Bh)/EIIGG, 

where 6(E, Eh) is the G-gap between E and Eh. 

Proof. This result follows Theorem 4.2. E1 
Theorem 6.2 provides an error estimate for the error in the approximation of the 

second component of the eigenfunction (u, p), i.e., an estimate for IIP - Phil G We 
now present a result giving error estimates for both components. 

Introduce the sesquilinear forms on (X x W) x (X x W) defined by 

A(u, p; v, q) = a(u, v) + b(v, p) + b(u, q) and B(u, p; v, q) = - (P, q)G 

(cf. Section 3) and let T, Th: X X W -X X X W be the operators defined by 

(6.11) Tf (u,p) E X x W, 

Ar(T(u,p); v, q) = B(u,p; v, q), V(v, q) e X x W, 

(6.12) f T I(u P) e Xh X 
Wh, 

A(Th(u,p); v, q) = B(u, p; v, q), V(v, q) E Xh X Wh. 

It is easily seen that the eigenvalues of (Q2) are the reciprocals of the eigenvalues of 
T and that T and (Q2) have the same eigenfunctions. The relation between the 
eigenvalues and eigenvectors of (Q2)h and Th is the same. We now assume 

(6.13) lim j|| - ThIIXXW,XXW = 0. 
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We note that T(u, p) does not depend on u and also that 

T(u, p) = (Ap, Bp), Vp E W. 

Suppose X-' is an eigenvalue of T with algebraic multiplicity m and let E= 

Ker((X-1 - T)a) where a is the ascent of X-' - T. Let Xj', Xj,, . X.. , mjh be the 
eigenvalues of Th converging to X-1 and let Eh be the direct sum of the generalized 
eigenspaces of Th corresponding to X-h, X-h,s,.** Xmje 

THEOREM 6.3. Under hypothesis (6.13) there is a constant C such that 

S(E, Eh) 6 CIl(T - Th)/EIIXXW,XXWW 

where S(E, Eh) is the X x W-gap between E and Eh. 

Proof. This result is a direct consequence of Theorem 2.2. 1 
There is a subclass of problems of type (Q2) for which it is possible to improve 

the above results. Suppose 

(6.14) Vh C V, 

where 

Vh = {v e Xh: b(v, k) = 0, VO E Wh} 

and 

V = {v e X: b(v, 0) = 0, V4 E W), 

and that there exists an operator HILh: Y = span{Ag)gEG -- Xh satisfying 

(6.15) b(y - H,y ,) = V, Vy E Y and Vt E Wh. 

The existence of a family {rIh) satisfying (6.15) and which is in addition 
uniformly bounded with respect to the X-norm, is closely related to the condition 
that there is a ko > 0, independent of h, such that 

sup Ib(v, k)I > kllll w, V4E Wh, 
vE-Xh IIIIX 

(see [6], [15], [17]). 11h has been constructed for several mixed methods (Ciarlet- 
Raviart [10], Herrmann-Miyoshi [20], [21], [29], and Herrmann-Johnson [20], [21], 
[25], for example). Condition (6.14) is relatively special. It holds, for example, in the 
Herrmann-Johnson method; cf. Subsection 7b(ii). 

We assume here, for the sake of simplicity, that the form a is hermitian. Then 
A = A * and B = B *. It follows from (6.1), (6.2), (6.14), and (6.15) that 

(6.16) b(Ahg - IhAg, 0) = 0, Vg E G and V4 E W. 

Now, using (6.10) and (6.16), we obtain 

((B - Bh) g)G = -a((A - A)f, (A - Ah)g) - b(Af - H,Af, Bg - r) 
(6.17) - b(Ag - HJAg, Bf - T), Vq, E Wh. 

Combining (6.17) and Theorem 2.1, we have in this case 
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THEOREM 6.4. Under the assumptions above, there exists a constant C such that 

VX - XhI < C{ II(A - A 1)/EII1H 

(6.18) + sup sup inf Ib(Af- HIhAf, Bg-X)| 
f E=E gCE nEWh 

1f11G=1 1IIgIIG=q 

+ II(B - Bh)/E112GG G 

Remark. It is easily seen that Theorem 6.4 holds in the more general context in 
which W is a Banach space, the space X is allowed to depend on h (X = X(h)), 
and the form b is bounded on X(h) x W for each h but is not required to be 
bounded uniformly in h. This remark is used in Subsection 7b(ii). 

7. Applications. In this section we apply the results of Sections 3-6 to a variety of 
methods of mixed and hybrid type. 

a. In this subsection we discuss a method which fits within the framework of 
Section 3. Consider the eigenvalue problem 

(7.1) {-p= Xo in Q, 

where Q is a convex polygon in R2. We then consider the following mixed 
formulation of (7.1): 

Seek A, (u, 4i) E H(div, Q) x L2(Q) satisfying 

(7.) uvdx + fi div-dx = 0, Vv E H(div, Q), 
(7.2) saa 

1 fk div u- dx = -X dx, V4 eL2p. 

If X, 4i is an eigenpair of (7.1) and u = grad 4A, then X, (u, 4i) is an eigenpair of (7.2), 
and if A, (u, 4,) is an eigenpair of (7.2), then A, 4, is an eigenpair of (7.1) and 
u = grad 4,. 

The eigenvalue problem (7.2) is of type (Q2) with X = H(div, Q), W= L2(Q), 
a(u, v) = fg uvi dx, b(u, 4) = fu div u4' dx, and s(', 4) = fJ u4 dx. If we set V = 
{v e X: b(v, q) = 0, Vq e W) = {v e H(div, Q): div v = 0), it is immediate that 
(3.12) and (3.13) are satisfied. (In this subsection we use the norm IIUII = (f j,u12 dx 
+ fJIdiv u12 dx)112 on H(div, Q).) We next describe the finite-dimensional sub- 
spaces used in the approximation scheme. Following [40], we begin by introducing 
the space Q associated with the unit right triangle T in the (t, q)-plane whose 
vertices are a1 = (1, 0), a2 = (0, 1), and ad = (0, 0). For K > 0 an even integer, 
define Q to be the space of all functions q of the form 

7 q1 = pOlK((C q) + a0 + a I'Kq + * + aK2 / / 

( q2 = POlK(C, 7) + /3O K1 + fi1&12 + *./ 

with z .K/2 (-4)'(a.-,f3) = 0, where POlK(C -q) denotes any polynomial of degree K 
in the two variables {, -q. For K > 1 an odd integer, define Q to be the space of all 
functions q of the form 

(7.4) f 
1 

POlK(, 1) + 
aOk + 1('71 + + K 

. 

= POlK(, q1) + f30OqK+1 + /31j7qK + * * *(K+1)2(K+1)/2 
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with 

(K+ 1)/2 (K+ 1)/2 

E (-1)iai = E (-1)ii = 0. 
i=O i=O 

Now consider any triangle T in the (xl, x2)-plane whose vertices are denoted by 

ai, 1 < i < 3. Let FT: X -FT(X&) = BTX + bT, BT E fS(R2), bT E R2 be the unique 
invertible affine mapping such that FT(ai) = ai, 1 ? i < 3. With each vector-valued 
function vt = (63, v2) defined on T we associate the function v defined on T by 

V=+JBTV3 
? T 

where JT = det BT. 
For 0 < h < 1, let Th be a triangulation of i made up of triangles T whose 

diameters are less than or equal to h. We assume the family {Th} satisfies the 
minimal angle condition, i.e., there is a constant a > 0 such that 

hT 
max - < a, Vh, 
TETh PT 

where hT is the diameter of T and PT is the diameter of the largest circle contained 
in T. We now let 

Xh = {v E H(div, 9): VT E Th 9, V/T E QT), 

where 

QT = {v E H(div, T): v- EQ) and Wh = {4 E L2(t): VT E Th, 4/T E Pki) 

where PK is the space of all polynomials of degree K in the variables xl, x2. 
We now consider the approximation method (Q2)h (or (3.5)) with Xh and Wh as 

above. (3.14)-(3.16) are shown to be satisfied in Theorems 3 and 4 of [40]. We can 
thus apply the results of Section 3 to this method. 

With this method we obtain an approximation to X, 41 and u = grad 41. 
From Theorem 3.1 (or from (3.17)) and Theorem 3 in [40] we have (using the 

notations from Section 3) 

1A - _l < Ch2 = C sup inf (||U - UhII + 11 4- 4,hIIo,0)2 
(u,,P)EE UhEXh 

(7X5) ||ju||j+jj|+jjU=j 1 Ah E Wh 

= Ch2K+2, 

provided 41 E HK+2(2). For the eigenvector error we obtain S(E, Eh) < Ch K+1 

where S(E, Eh) is the gap between E and Eh in the norm of H(div, 2) X L2(2). 
Remark. We obtain the same estimates when we use the finite-dimensional 

subspaces described in [18]. 
b. In this subsection we study mixed methods for the approximation of eigenval- 

ues of 4th order problems. Eigenvalue estimates for these methods were first 
obtained by Canuto [9]. 

(i) Consider the model eigenvalue problem 

A S24/ = X4/ in U., 
(7.6) l +p=a4l= Onr= , 

L an 
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where 2 is a convex polygon in R2. The mixed method we study here is based on 
the following formulation of (7.6): 

Seek X, (u, 4 E H l(a) x Ho'I2) satisfying 

f uv- dx - VvV4dx= O, Vv E H '(u), 
(7.7) 

-fVuVO dx = -Xf 4,odx, V) E HI0, 

where V is the gradient operator. 
It is not difficult to show that if X, 41 is an eigenpair of (7.6) and u = -lA4, then X, 

(u, 41) is an eigenpair of (7.7) and if X, (u, 41) is an eigenpair of (7.7), then X, 4, is an 
eigenpair of (7.6) and u = -lA4. 

The eigenvalue problem (7.7) is of type (Q2) with X= H '(a), W= Ho=(2), 
a(u, v) = fI uv- dx, b(u, 4,) = -fI VuV41 dx, and s(41, 4) = +4+, dx. Note that 
assumption (3.12) is not satisfied here. 

Next, we discuss the approximate eigenvalue problems. As in Subsection 7a, let 
{Th} be a triangulation of 9 which satisfies the minimal angle condition and is in 
addition quasiuniform, i.e., there is a constant T > 0 such that 

max hT/min hT < TVh. 
T T T 

Then we consider problem (Q2)h with 

Xh = {V ECO() VI/T E PK, VT E Th} 

and Wh = Xh n H l(). 
With this method we obtain approximations to X, 4, and u = -A4+. This method 

as applied to source problems was studied in Glowinski [19], Mercier [27], and 
Ciarlet-Raviart [10]. 

We analyze this method by means of Theorems 6.1, 6.2, and 6.3. Our problem 
fits into the framework of Section 6 with H = G = L2(Q). Clearly B*= B, 
A* = A, and B is selfadjoint. The problems (6.1)-(6.4) are uniquely solvable and 
B, Bh: L2(g) -- L2(9) are easily seen to be compact. Suppose K > 2. Then, using 
the results in Subsection 3a in [15], we have: 

(7.8a) II(A - Ah)g9110, < Ch s-21Bg 

(7.8b) II(A - A9)gla < Ch s-31Bg 

(7.8c) II(B - Bh)gjj0ou < Chs l lBgjjS9 

(7.8d) II(B - Bh)glll1 u < ChS- 1 BgjSQ9 

where s = min(r, K + 1) and Bg E Hr(U). 
From (7.8c) with s = 3, we see that lB - BhIIEL2(g)) 

< Ch2 and hence that 
limh OIIB - BhIIGG = 0. 

We can thus apply Theorems 6.1 and 6.2. 
Let X be an eigenvalue of (7.6) and suppose the corresponding eigenfunctions 4, 

are in Hr(2) with r > 3. Then, using Theorem 6.1 and (7.8), we immediately obtain 

(7.9) 1A - XjhI < Ch 2 
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where s = min(r, K + 1). Note that since B is selfadjoint we obtain estimates for 
each X - instead of for A - Xh. 

We now turn to eigenfunction estimates. For the sake of simplicity, we assume A 
has geometric multiplicity 1. From Theorem 6.2 we obtain 

(7.10) 14 - 4PhIjO,Q < Chs-l, 

and from Theorem 6.3 we obtain 

(7.1 1) ilu - uhjjI,Q < Ch s-3, 

where s = min(r, K + 1) provided 4' E H'(Q). In (7.10), 4' and 'Ph are normalized 
with respect to 11 I1,Q and in (7.11) u and uh are normalized with respect to 
I I I I,. We note that we must check that limhOIIT - Th IIXxw,xxw = 0 in order to 
use Theorem 6.3. This follows from (7.8b) and (7.8c) and the regularity estimate 

Bg113+e,Q < CII g1jo, for some e > 0. 
These techniques can also be applied to the mixed method of Herrmann-Miyoshi 

[20], [21], [29]. The analysis is essentially the same as that above and we would 
obtain estimate (7.9) for this method. We note that our analysis of these methods 
does not yield results when K = 1. For the case K = 1 see Ishihara [22], [23]. 

(7.9) yields an improvement over the estimates in Canuto [9] in the case when the 
eigenfunctions have low regularity. If, for example, 4' E H3 5(Q) and K = 3, then 
(7.9) yields the estimates IX - hjhI < Ch3, whereas the estimates in [9] yield IX - ?hI 
< Ch. 

Part of the results in this subsection are contained in [38]. 
(ii) Herrmann-Johnson Method. We consider here a further mixed method for the 

approximation of (7.6), which has been introduced in [8]. 
Let K > 1 and let {Th} be a family of triangulations satisfying the minimal angle 

condition. Given T E Th and a function v = (vij) with vij E H 1(T), 1 < i, j < 2, 
and v12 = v21, we define 

2 2 
M,(v) = 2 vijvpvi and M,(v) 2 vij=jTi, 

i,ji1 i,j-1 

where v = (vI, v2) is the unit outward normal and T = (Tl, T2) = (v2, -vP) is the unit 
tangent along UT. Let 

X = X(h) = {v = (vij): vij E L2(pq), V12 = V21, VjlT E H (T), 

V T E Th, and M,,(v) is continuous across interelement boundaries) 

with 
2 

llvIlx = X IVII1,T 
i,j 1 TErh 

and 

W = W0 P(R), where p is some number larger than 2. 

The mixed method we study here is based on the following variational formula- 
tion of (7.6): 
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Seek X, (u, 41) E X x W satisfying 

2f. .d+2 Ua4,d 4,Pa 
u, .J I T dx J M'(V) ds =0, 

Q= I ~TE=-T Q,=1j TT~X 

(7.12) Vv e X; 

TETh{(,J= laXjLaxT 
u a ds a =T -J4 dx, V c W. 

If X, 4, is an eigenpair of (7.6), then X, ((a 24,/axjaxj), 4,) is an eigenpair of (7.12), 
and if X, ((uq.), 4,) is an eigenpair of (7.12), then X, 4, is an eigenpair of (7.6) and 
Ui = a2 

2/axiaxj. 
(7.12) is a problem of type (Q2) with X and Was above and 

2 
a(u,v)= v fuij, i dx, 

i,j=1 

b* (A) 1: E - dx - JMl(u)apd 
T E Th ij J- IT aXj aXi laT 8T ) 

We consider problem (Q2)h with 

Xh ={v E X: vij/ E PK-1, VT E Th} 

and 

Wh = {4 e C 0(0): /T E PK, VT E Th, o = 0 on aQ}. 

With this choice we have the method of Herrmann-Johnson [20], [21], [25] in case 
K = 1 (for K > 1, see [8]) and we obtain approximations to X, a 4/axiaxj and 4. 
Our problem fits into the framework of Section 6 with G = L2(Q) and H= 

(L2(g))3 (cf. remark at the end of Section 6). We can now apply Theorem 6.4 if we 
remark that the operator Hh exists and that Vh c V. 

From the results of Subsection 3c in [15], we have 

(7.13a) II(A - Ah)AIo,Q 4 Ch s-2I IBAIs,S0 3 < s < K + 2, 

{Chs-IIIBfII, 3<s <K +29 if K >29 
(7.13b) II (B - Bh)AIo,s7 ChIIfI4,, f =1 

{Ch 211Bf 1 4,09 if K-=1, 

inf I lb(Af lhAf, Bg9- < Cht+s-4IIAAIs-2,QIIBAIt, 
(7.13 c)q' Wh 

3 < s < K + 2,2 <t S K + 1. 

Suppose X is an eigenvalue of (7.12) and suppose the corresponding eigenfunctions 
4, are in H'(92). Now Theorem 6.4, together with (7.13), yields 

(7.14) XhI , Chs+t4, s = min(K + 2, r), t = min(K + 1, r). 

This result improves on the result in Canuto [9] if r < K + 2. 
c. In this subsection we discuss a hybrid method for the approximation of the 

eigenvalues of 2nd order problems. The related approximation for source problems 
was studied by Raviart-Thomas [41] and Thomas [44]. As in Subsection 7a, we 
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consider the Dirichlet eigenvalue problem 

(7.15) 
-Au = Xu int , 

tu = 0 onr =aua, 
where 2 is a convex polygon in R2. 

For spaces we choose H = L2(g), X = 11TErh H'(T) with 

11 U||X = ( E 11 Ull12,T IlulIx = 
TETh 

W = { ,u C 17 H-1/2(aT): there exists a function q c H(div, 2) 
T Ei Th 

such that q v p= fon aT. TCTh 

with |1I = (fTil E|,U |1/2,aT)/, where 

III'II-1/2,8T = sH()inf 1q11 H(div, T), q E=H(div, 9) 
q v=,u on aT 

jjqjjH(div, T) = (Ilq||0,T + hT|Idiv q||0,T)/ 

For sesquilinear forms we choose 

a(u,v)= u fVU v dx and b(u,t)=- uf Ujds, 
TETh T TETh 8T 

where the integral over a T expresses the duality between H 1/2(aT) and H-1/2(aT). 

We then consider the following formulation of (7.15): 
Seek X, (u, p) E X x W satisfying 

(7.16) a(u, v) + b(v, p) = X uv-, Vv C X, 

tb(u, q) = O, Vq C W. 

If X, u is an eigenpair of (7.15) andp = auu/ av on aT for all T E Th, then X, (u,p) is 
an eigenpair of (7.16), and if X, (u, p) is an eigenpair of (7.16), then A, u is an 
eigenpair of (7.15) and p = aulap on aT for all T C Th. (7.16) is an eigenvalue 
problem of type (Ql) with X, W, H, a, and b chosen as above and r(u, v) = 

f S?UVi dx. 

We next describe the finite-dimensional approximating spaces that we will use. 
Let K > 1 be an odd integer. For Xh we choose H1TET PK(T) where PK(T) denotes 
the space of functions defined on T which are polynomials of degree less than or 
equal to K. For Wh we choose 

Wh = { I' E W: P/aT E SK_l(aT)}, 

where SK 1(aT) is the space of all functions defined on aT whose restrictions to 
any side T' c aT are polynomials of degree less than or equal to K - 1. For a 
more complete treatment of these spaces as well as a description of families of 
approximating spaces indexed by even K we refer to [41], [44]. 

We now recall the basic estimates for the errors (A - Ah)g and (B - Bh)g which 
are proved in Raviart-Thomas [41] and Thomas [44]: 
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(7.17) JI(A - Ah)gllX +|I(B - Bh)gll w < Ch?jAg||z+1 

(7.18) II(A - Ah)g|10|, < Ch'+jAgjj+j,U, 
for ! = 1, . . , K, provided Ag E H + 1(Q). 

We have V = H2(Q) n Ho'(Q); our problem fits into the framework of Section 5 
(cf. remark following Theorem 5.2) and we can thus estimate the eigenvalue errors 
with Theorem 5.1. A is selfadjoint in this example. Let X be an eigenvalue of (7.15) 
and suppose the corresponding eigenfunctions u are in H'+ l(a) with 1 (1 < K. 
Then combining Theorem 5.1 and Estimate (7.17) we have 

(7.19) IX-AXJhI Ch2l. 

We now consider eigenfunction errors. We assume X has geometric multiplicity 1 
for the sake of simplicity. From Theorem 5.2 and (7.18) we get 

(7.20) 1ku - UhIO,Q < Ch'+1 

provided u E H+ 1 (a). Here u and uh are normalized with respect to 1IIo,. 
d. In this subsection we consider the approximation of an eigenvalue problem 

associated with the Stokes problem by a method developed in Girault-Raviart [18]. 
Let 2 be a convex polygon in R2 and consider the eigenvalue problem 
Find X, ui and p satisfying 

0-A u- + grad p = Au' in t2, 
(7.21) {divu = 0 in 2, 

L onIF =ag 

If we introduce the stream function 41 (u = curl 41), this problem can be formulated 
as: 

Find X, 4, satisfying 

XAAs in 9, 
(7.22) { = =o on F. 

av 
We then consider the following mixed formulation of (7.22) (introduced in [18] for 
source problem): 

Find X, (u, ,u) E X x W satisfying 

(7.23) { a(u, v) + b(v, ) = Xr(u, v), Vv E X, 

b(u, q) = 0, Vq E W, 

where 
X= H'() x L (Q), 

W= Hl(g) 

a(u, v) = w#fdx for u = (,w), v = (,9) E&X, 

b(u, q) =(curl q curl 4-w) dx for u E X, q E W, 

r(u, v)=J curl 4, curl 4dx for u, v E X, 

where curl 4 = (-a4/ax2, a4/axX). 
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If X, 41 is an eigenpair of (7.22) and w = ,u = -A+4, then X, (u = (4A, w), ,u) is an 
eigenpair of (7.23), and if X, (u = (4A, w), ,u) is an eigenpair of (7.23) then X, 4i is an 
eigenpair of (7.22) and w = ,u = -A+4. The eigenvalue problem (7.23) is of type 
(Ql). Note that assumption (3.13) is not satisfied here. 

Next we consider the approximation method introduced in Girault-Raviart [18]. 
We again let {Th)} be a quasiuniform family of triangulations of i2 that satisfies the 
minimal angle condition and let 

Wh = {q 6 C (Q) qlT EP and Xh= (Whn Ho(0)) X Wh. 

Then we consider the following approximate problem: 
Find Xh, (Uh, Ith) E Xh X Wh satisfying 

(7.24) { a(uh, Vh) + b(vh, ILh) = Xhr(uh, Vh), Vvh E Xh, 

b(uh, qh) = 0, Vqh E Wh. 

(7.23) and (7.24) fit into the framework of Section 5 with X, W, a, b, and r defined 
as above and H = Ho(9) x L2(Q). In this case, we have 

V= {v E X: b(v,q) = O,Vq E W) = {(O,9): 4 E Ho( )and 0 = -AO) 
and a(, -) is V-elliptic. 

We now recall the basic estimates for the error (A - Ah)g of the source problem, 
which are proved in Girault-Raviart [18]. 

Set Ag = (4, 9), Ahg = (oh, Oh) We have 

(7.25) |I(A - Ah)g11H < ChI1911H, 

(7.26) |I(A - Ah)g|1X < Ch K/2 {II4IIK+ 1,o,0Q +II4)IIK+3/2,2,Q), 
if 4 E WK+ 1l?(g) n HK+3/2(Q) 

(7.27) 114 - OhII1,Q < ChKII4)IK+1,Q 
if 4 E HK+I (), provided K > 2. 

Let X be an eigenvalue of (7.22) and let & be the corresponding eigenspace. Then 
X-1 will be an eigenvalue of A with the eigenspace given by E= {(,-A4,): 
4, E & }. Let m be the multiplicity of X-1. From (7.25) we see that 

lim IIA - AhIIHH = 0. 

Thus, m eigenvalues Xj1 ... X ?h of Ah converge to X-1. Assume & C WK+ lo(o) 

n HK+2(Q). We can now estimate the terms on the right side of (5.8). 
From (7.26), we have 

(7.28) JI(A - Ah)/EIIHX Ch2K-I 

Next, let f, g E E with IIfIIH = II 8IIH = 1 and set Af = (4, 9) and A,f = (oh, Oh). 

Then, using (7.26) and (7.27), we have 

I b((A - A)f Bg - = f curl () - Oh) curl (Bg - q) dx 

-f ( - Oh)(Bg - q) dx 

< C{||+ - 
-hIllQ|JBg -qll,u + 11 

- 
OhIlglIf 

- 
qIIoJ,} 

< C { h'KI Bg - qlll,1 + hK- 1/2 l Bg - qJo,}11 
< ChK- {hllBg - q1I, + 1Bg - IJ19Q 
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for any -q E Wh. Since Bg E H K(0), by standard approximation results we have 

(7.29) inf Ib((A - A)f, Bg - X)| Ch2K- 1. 
,q E Wh 

Finally, combining (5.8), (7.28), and (7.29), we have 

(7.30) IA - XJ|I Ch2K-1 j = 1, 2, m. 

e. In this subsection we consider a method introduced by Crouzeix-Raviart [11] 
for the approximation of the eigenvalues of the Stokes problem (7.21). Let 

X = Hp(R), W = L2(2)R, 

2 fau.av. 
a(u, v) = 2 i Idx foru,vEX, 

i,~j- I 2jX 

b(u, q) = -fq div u dx for u E X, q E W. 

Then we consider the following formulation of (7.21): 
Find X, (u, p) E X x W satisfying 

(7.31) f a(u, v) + b(v, p) = X(u, V)L2(u), Vv E X, 

b(u, q) = 0, Vq E W. 

We next consider the finite-dimensional approximating spaces that we will use. 
Suppose Fh C Ho(2) and Gh c L2(g) are given finite-dimensional spaces and 
Xh = Fh2 and Wh = Gh/R. Regarding these spaces, we assume 

(HI) there is a bounded operator rh: (H 2(g) n HK(u)) Wh that satisfies 
(i) fI q div(v - rhv) dx = 0 for all q E Gh, 

(ii) there is a positive integer K such that 

IIrhV - VIIH6(0) < Ch' IVIIHI+('Q) for 1 < I < K, 
and 

(H2) the spaces Gh contain constants, and if Ph is the orthogonal projection of 

L2(p) onto Gh, then 

fq dx = 0 implies fPhq dx = 0 

and llq - Phq110u 
< Ch 11q1K,Q' 1 < 1 < K. 

Several examples of families of spaces satisfying (HI) and (H2) for various 
values of 1 are constructed in Crouzeix-Raviart [11]. 

With Xh and Wh defined as above, we consider the approximate problem: 
Find Xh, (Uh, Ph) E Xh X Wh satisfying 

(7.32) a(uh, vh) + b(vh,ph) = Xh(uh, Vh)L2(0), VVh E Xh, 

b b(uh, qh) =?0 Vqh E Wh 

(7.31) and (7.32) fit into the framework of Section 5 with X, W, a, and b defined as 
above and H = L2(p). The eigenvalue error that arises in this approximation can 
now be estimated with the aid of Theorem 5.1. Regarding the associated source 
and approximate source problems, Crouzeix-Raviart [11] have shown that 

(7.33) II(A - Ah)AIX < Ch'(IIAI]IHI+i(Q) + 11 BI Q,u) 
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and 

(7.34) II(B - Bh)AlW < Ch'(IIAAIH,+I(1) +IIBAI ,a) for 1 <1 (K. 

Let A-' be an eigenvalue of A with multiplicity m. Then m eigenvalues 
AW^ . , of Ah converge to A-1. Suppose that the associated space E of 

eigenfunctions satisfies E c HK+ 1(a) and B(E) c HK(2). Then it follows im- 
mediately from Theorem 5.1, (7.33), and (7.34) that 

(7.35) ?jhl < Ch2, 1 < j <i, 

for 1 < 1 < K. (7.35) was proved by Osbom [37]. We remark that this method can 
also be analyzed by means of the results in Section 3. 

C. E. A. Limeil 
B.P. 27 
94 190 Villeneuve, St. Georges, France 

Department of Mathematics 
University of Maryland 
College Park, Maryland 20742 

Centre de Mathematiques Appliquees 
Ecole Polytechnique 
91128 Palaiseau Cedex, France 

Analyse Numerique 
Universite Pierre et Marie Curie 
5 Place Jussieu 
75230 Paris Cedex 05, France 

1. I. BABUSKA, "Error-bounds for finite element methods," Numer. Math., v. 16, 1971, pp. 322-333. 
2. I. BABuiKA & A. Aziz, "Survey lectures on the mathematical foundations of the finite element 

method" in The Mathematical Foundations of the Finite Element Method with Application to Partial 
Differential Equations (A. K. Aziz, Ed.), Academic Press, New York, 1973, pp. 5-359. 

3. I. BABuiKA & J. OSBORN, "Numerical treatment of eigenvalue problems. for differential equations 
with discontinuous coefficients," Math. Comp., v. 32, 1978, pp. 991-1023. 

4. J. BRAMBLE & J. OSBORN, "Rate of convergence estimates for non-selfadjoint eigenvalue approxi- 
mations," Math. Conp., v. 27, 1973, pp. 525-549. 

5. I. BABUSKA, J. OSBORN & J. PITKARANTA, "Analysis of mixed methods using mesh dependent 
norms," Math. Comp., v. 35, 1980, pp. 1039-1062. 

6. F. BREzzI, "On the existence, uniqueness and approximation of saddlepoint problems arising from 
Lagrangian multipliers," R.A.I.R.O., v. 8, R-2, 1974, pp. 129-151. 

7. F. BREzzI, "Sur la methode des elements finis hybrides pour le probleme biharmonique," Numer. 
Math., v. 24, 1975, pp. 103-131. 

8. F. BREzzI & P. A. RAVLART, "Mixed finite element methods for 4th order elliptic equations," Topics 
in Numerical Analysis III (J. Miller, Ed.), Academic Press, New York, 1978. 

9. C. CANUTO, "Eigenvalue approximations by mixed methods," R.A.I.R.O. Anal. Numer., v. 12, 
1978, pp. 27-50. 

10. P. CIARLET & P. A. RAVLART, "A mixed finite element method for the biharmonic equation," 
Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations (C. de Boor, 
Ed.), Academic Press, New York, 1974, pp. 125-143. 

11. M. CROUZEIX & P. A. RAVIART, "Conforming and nonconforming finite element methods for 
solving the stationary Stokes equations. I," R.A.I.R.O., v. 7, R-3, 1973, pp. 33-76. 

12. J. DESCLOUX, N. NASSIF & J. RAPPAz, "On spectral approximation, Part 2: Error estimates for the 
Galerkin method," R.A.I.R.O. Anal. Numer., v. 12, 1978, pp. 113-119. 

13. J. DESCLOUX, N. NASSIF & J. RAPPAz, Various Results on Spectral Approximation, Rapport du 
Dept. de Math. de l'Ecole Polytechnique Federale de Lausanne, Suisse, 1977. 



452 B. MERCIER, J. OSBORN, J. RAPPAZ AND P. A. RAVIART 

14. R. FALK, "Approximation of the biharmonic equation by a mixed finite element method," SIAM 
J. Numer. Anal., v. 15, 1978, pp. 556-567. 

15. R. FALK & J. OSBORN, "Error estimates for mixed methods," R.A.I.R.O. Anal. Numer., v. 14, 
1980, pp. 249, 277. 

16. G. Fix, "Eigenvalue approximation by the finite element method," Adv. in Math., v. 10, 1973, pp. 
300-316. 

17. M. FORTIN, "Analysis of the convergence of mixed finite element methods," R.A.I.R.O., v. 11, 
1977, pp. 341-354. 

18. V. GIRAULT & P. A. RAVLART, "An analysis of a mixed finite element method for the Navier- 
Stokes equations," Numer. Math., v. 33, 1979, pp. 235-271. 

19. R. GLOWINSKI, "Approximations externes par elements finis de Lagrange d'ordre un et deux, du 
probleme de Dirichlet pour l'operateur biharmonique, Methodes iteratives de resolutions des problemes 
approches," in Topics in Numerical Analysis (J. J. H. Miller, Ed.), Academic Press, New York, 1973, pp. 
123-171. 

20. L. HERRMANN, "Finite element bending analysis for plates," J. Eng. Mech., Div. ASCE EM5, v. 
93, 1967, pp. 49-83. 

21. L. HERRMANN, "A bending analysis for plates," Proc. Conf. on Matrix Methods in Structural 
Mechanics, AFFDL-TR-66-88, pp. 577-604. 

22. K. IsmHIHAR, "Convergence of the finite element method applied to the eigenvalue problem 
Au + Au = 0," Publ. Res. Inst. Math. Sci., v. 13, 1977, pp. 48-60. 

23. K. IsHiHARA, "The buckling of plates by the mixed finite element method," Mem. Numer. Math., 
v. 5, 1978, pp. 73-82. 

24. K. IsmIHARA, "A mixed finite element method for the biharmonic eigenvalue problem of plate 
bending," Publ. Res. Inst. Math. Sci., v. 14, 1978, pp. 399-414. 

25. C. JOHNSON, "On the convergence of a mixed finite element method for plate bending problems," 
Numer. Math., v. 21, 1973, pp. 43-62. 

26. W. KOLATA, "Approximation of variationally posed eigenvalue problems," Numer. Math., v. 29, 
1978, pp. 159-171. 

27. B. MERCIER, "Numerical solution of the biharmonic problems by mixed finite elements of class 
CO," Boll. Un. Mat. Ital., v. 10, 1974, pp. 133-149. 

28. B. MERCIER & J. RAPPAz, Eigenvalue approximation via non-conforming and hybrid finite element 
methods, Rapport du Centre de Mathematiques Appliquees, Ecole Polytechnique, Palaiseau, France, 
1978. 

29. T. MIYosm, "A finite element method for the solution of fourth order partial differential 
equations," Kumamoto J. Sci. (Math.), v. 9, 1973, pp. 87-116. 

30. S. NEMAT-NASSER, "General variational methods for elastic waves in composites," J. Elasticity, v. 
2, 1972, pp. 73-90. 

31. S. NEMAT-NASSER, "Harmonic waves in layered composites," J. Appl. Mech., v. 39, 1972, pp. 
850-852. 

32. S. NEMAT-NASSER, General Variational Principles in Nonlinear and Linear Elasticity with Applica- 
tions. Mechanics Today 1, Pergamon Press, New York, 1974, pp. 214-261. 

33. T. ODEN, "Some contributions to the mathematical theory of mixed finite element 
approximations," in Theory and Practice in Finite Element Structural Analysis, Univ. of Tokyo Press, 
Tokyo, 1973, pp. 3-23. 

34. T. ODEN, "Some contributions to the mathematical theory of mixed finite element 
approximations," in Theory and Practice in Finite Element Structural Analysis, Univ. of Tokyo Press, 
Tokyo, 1973, pp. 3-23. 

35. T. ODEN & J. REDDY, "On mixed finite element approximations," SIAM J. Numer. Anal., v. 13, 
1976, pp. 393-404. 

36. J. OSBORN, "Spectral approximation for compact operators," Math. Comp., v. 29, 1975, pp. 
712-725. 

37. J. OsBoRN, "Approximation of the eigenvalues of a non-selfadjoint operator arising in the study of 
the stability of stationary solutions of the Navier-Stokes equations," SIAM J. Numer. Anal., v. 13, 1976, 
pp. 185-197. 

38. J. OSBoRN, Advances in Conputer Methods for Partial Differential Equations III, Proc. Third 
IMACS Internat. Sympos. on Computer Methods for Partial Differential Equations held at Lehigh 
University, Bethlehem, Pennsylvania, June 1979, (R. Vichnevetsky, R. Stepleman, Eds.). 

39. R. RANNACHER, "On nonconforming and mixed finite element methods for plate bending 
problems-the linear case." (Preprint.) 



EIGENVALUE APPROXIMATION BY MIXED METHODS 453 

40. P. A. RAVLART & J. M. THOMAS, A Mixed Finite Element Method for 2nd Order Elliptic Problemn, 
Lecture Notes in Math., Vol. 606, Springer-Verlag, Berlin and New York, 1977, pp. 292-315. 

41. P. A. RAVIART & J. M. THOMAS, "Primal hybrid finite element method for 2nd order elliptic 
problems," Math. Conp., v. 31, 1977, pp. 391-413. 

42. R. SCHOLZ, Approximation von Sattelpunkten mit Finiten Elementen, Tagungsband, Bonn. Math. 
Schr., Vol. 89, 1976, pp. 53-66. 

43. R. SCHOLZ, "A mixed method for 4th order problems using linear finite elements," R.A.I.R.O. 
Numer. Anal., v. 12 1978, pp. 85-90. 

44. J. M. THOMAS, Sur l'Analyse Numerique des Methodes d'Elements Finis Hybrides et Mixtes, Thesis, 
Univ. P & M Curie, Paris, 1977. 

45. J. WILKINSON, The Algebraic Eigenvalue Problem, Oxford Univ. Press, 1965. 


	Cit r67_c67: 
	Cit r69_c69: 


